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Synopsis 

Based on the Saito’s model for random chain scission, a novel procedure is developed to determine 
the activation energy of polymer degradation process. Basically, this is a simple viscometric technique 
which yields reliable results. In fact, it is superior to the existing viscometry which has been widely 
used to study the kinetics of random scission. The present method is successfully applied to the 
thermal degradation of natural rubber, polycarbonate, and poly ( tetramethylene oxide) in bulk. 

INTRODUCTION 

Thermal oxidative degradation of polymers can lead to chain scission and 
changes in molecular weights. Hence, the kinetics and mechanisms of these 
chemical processes may be investigated by a variety of molecular weight mea- 
surements including osmometry, light scattering, gel permeation chromatog- 
raphy (GPC) , and dilute solution viscometry (DSV) . Among them, the last 
two methods have recently been more widely applied. For example, the mech- 
anisms of chain scission of poly (methyl methacrylate) and some polyphos- 
phazenes2 were studied by GPC. Whereas, the DSV has been employed to 
examine the thermal degradation of polystyrene and  rubber^.^ 

In the present context, DSV is of particular interest because of its simplicity 
and reliability. This technique results in the intrinsic viscosity [ 771, which is 
related to the viscosity-average molecular weight, a”, by the Mark-Houwink- 
Sakurada equation given by 

where K and a are constants. However, the degree of degradation, Z, defined 
as the number of chain scissions per initial number-average molecule is based 
on the number-average degree of polymerization, p,,  namely5 

where pE and PL are the initial and resulting Pn’s respectively. Despite this, 
eq. ( 1) is conventionally used to compute the parameter Z by assuming that 
the polymer is characterized by a particular molecular weight distribution in- 
susceptible to chain s c i ~ s i o n . ~ ~ ~ * ~ ~ ~  This work offers a refined approach to derive 
an important kinetic parameter from the [ 771 data of degraded polymers. It is 
not necessary to know the relationship between [ 771 and p ,  in the present cal- 
culations. 
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THEORY 

The kinetics of polymer degradation have been studied by various theoretical 
For random chain scission, Inokuti has shown that the kth moment, 

p k ,  of the molecular weight distribution of a degraded polymer with degree of 
degradation Z is given by" 

where 

Here, p is the degree of polymerization and m (p, 0) designates the normalized 
initial molecular weight distribution function in the sense 

r m  

For a Schulz-Zimm distribution. we have 

p*-'exp( - y b )  Y 
m(P, 0 )  = r(l + b )  

where 

r(l + b )  
y = b / P ;  = 

(5)  

with P: ,  Pt being the initial viscosity-average and initial weight-average degrees 
of polymerization respectively, Do being the initial polydispersity, and r( x )  
being the Gamma function of x .  

The viscosity-average degree of polymerization pt at (Y is given by 

Combining eqs. ( 3 ) ,  (5) ,  and (6)  leads to 
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X [[xb-leap(-x) dx yl+aexp(-y/b) dy 

- ( 4 b )  ~ y z i a e x p ( - E y / b )  dy I1 ( 7 )  

where [ 71, and [ 1710 are the intrinsic viscosities at E and E = 0 respectively. 
Unfortunately, the definite integrals in eq. (7)  can only be estimated by means 
of numerical integration which is tedious and subject to numerous algorithm 
errors. However, for minor chain scission, eq. ( 7 )  is converted to 

[7Is - (1 + Cy/b) - ( l+a+b)  + 

[ 1710 

(Z/b) (-E/b)iI'( 1 + u + b + i) 
i ! ( 2  + a + i) -- 

(1 + a + b )  i=o 

(1 + a + b + i ) ( 2  + a + b + i) E (;)I, z / b  < 1 ( 8 )  ++ ( 3 + a + i )  

Certainly, eq. (8) is more practical than eq. ( 7 )  in computing the ratio 

In view of the complexity of the foregoing solutions, we resort to a closed 
[7ls/[710. 

expression given by 

where 

b " I'(l + b)I ' ( l  f a  + b,) 
I'(1 + b,)I '(l + a  + b )  F ( b ,  b,) = ( g )  

This equation was developed by Kotliar l1 by assuming that both the initial and 
resulting molecular weight distributions are of the Schulz-Zimm type but with 
different width parameters respectively denoted by b and b,. It can be shown" 

b ,=  { 2 ( 1 + E - ' ) [ l + E - ' ( ( 1 + E / b ) - b - l ) ]  -1>-' (10) 

Eq. (10) exhibits a unique feature of random chain scission, which causes any 
initial molecular weight distribution to approach the most probable one (i.e., 
b, = 1). 

Figure 1 shows the monotonic decrease of [ 7] , /  [ 710, predicted by eqs. (9)  
and ( l o ) ,  with increasing 5 over a practical range of Do varying from 1 to 10. 
However, the corresponding function F is more interesting in that it does not 
follow the foregoing decaying pattern with increasing E for Do < 2, as illustrated 
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Fig. 1. Variation of [?I./[ ?lo with Z for various values of Do at a = 0.70. 

in Figure 2. In addition, it is demonstrated that the initial most probable dis- 
tribution (Do  = 2)  is virtually preserved during random chain scission. Hence, 
one may take advantage of this peculiar situation, which renders F (  1, 1 )  = 1, 
to facilitate the thermal degradation studies. In general, the function F may be 
represented by an empirical relation 

F ( b ,  b,) = A ( l  + Z)", Cr > 0 (11)  

where A and n are constants for low degree of degradation. Some values of 
these constants are displayed in Table I. Combining eqs. (9)  and ( 11) yields 

for low conversion. 
Table I also contains the index E defined by lo 
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Fig. 2. Variation of F ( b ,  b.) with Z for various values of Do at a = 0.70. 
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TABLE I 
Values of Empirical Constants A and n for Low Degree of Degradation and a = 0.7 

1.0" 
1.5 
2.0 
3.0 
4.0 
6.0 
8.0 

10.0 

1.003 
1.004 
1.000 
0.991 
0.981 
0.977 
0.976 
0.961 

0.348 
0.157 
0.000 

-0.294 
-0.560 
-1.165 
-1.719 
-2.293 

t 0.78 
z 0.69 
> O  
t 0.63 
z 0.60 
2 0.65 
z 0.63 
t 0.64 

- < 1.0 
5 1 . 0  
> O  
I 0.6 
I 0.5 
5 0.25 
50 .20  
I 0.15 

5 1.15 
5 1.02 

1.00 
< 1.01 
5 1.02 
5 1.04 
5 1.06 
5 1.07 

a Based on b = lo'. 

t = [ 2 ( 1 +  b;l)  - l ] / C '  (13) 

where 

(13a) C' = P; /  Ps, 
- - 3 ( 1 + E ) { l + ( 1 + E / b ) - ' 1 + b ' + 2 / E [ l - ( 1 + Z / b ) ~ b ] }  

E - 1 + (1 + a/b) -b  

with p ;  being the resulting z-average degree of polymerization. This parameter 
is introduced to monitor the extent of deviation between eqs. ( 7)  and (9) .  For 
perfect agreement, the e is unity. Clearly, Table I shows that the Kotliar's 
approximation is valid for Do I 10 if Z is sufficiently low. On the other hand, 
one obtains 

lim e = 1 
a+m 

indicating that eq. (9)  is equally true for very large numbers of scissions. Hence 
when iJi approaches infinity, eq. ( 9 )  becomes 

where 

which is independent of E. 
Table I1 compares the numerical results on [ 17Is/ [ 1710 obtained by various 

approaches. The average deviation between the predictions of eqs. (8) and ( 9 ) ,  
us, defined in Table 11, is found to be less than 0.01 except for a broad molecular 
weight distribution of Do = 10 which registers a, = 0.0142. Also Table I1 exhibits 
the good agreement between eqs. (9)  and ( 12) in terms of a, detailed therein. 
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TABLE I1 
Comparison of Different Approaches in Predicting the [q]./[ql0 of Degraded Polymers 

No. DO x 103 u: x 103 

1.0‘ 
1.5 
2.0 
3.0 
4.0 
6.0 
8.0 

10.0 

7.6 
1.3 
0.3 
0.9 
4.5 
6.0 
2.4 

14.2 

3.9 
2.8 
0.0 
4.5 
7.7 
6.2 
8.3 
7.9 

a u8 = root-mean square of the differences between the predictions of eqs. (8) and (9) for a set 
of rn data = [Cftl (A,)2/rn]1’2, where A = R, - Rk, with R, and Rk being the ratios [ q ] . / [ q ] .  obtained 
by eqs. (8) and (9) respectively. 

Analogously ua = [CE1 (A32/rn]’’2, where A = R, - &with R, being the [q]./[~], given by eq. 
(12). 
‘ Based on b = lo4. 

To further compare eqs. (8) with (12) ,  we refer to the sum of crs and aa. The 
maximum average deviation of (a, + oa) displayed in Table I1 is noted to be 
0.0221 for the case of Do = 10. Since eq. ( 12)  holds for [ 17],/ [ 1710 2 0.64 (Table 
I )  for this particular system, the maximum error in [ qlS/  [ 1710 introduced by the 
foregoing approximations would be - 3.5%. The experimental uncertainty in 
[ q],/ [ 1710 is of the order of - 4% or higher.” This justifies the utility of the 
proposed approximate analytical functions for the ensuing analysis. 

If the random scission occurs at  chain linkages whose rate of disappearance 
follows a first order kinetics, one obtains 

(16)  
- a = pR[1 - exp(-kt)] 

where k is the rate constant, and t is the degradation time. For relatively short 
t ,  eq. (16)  is simplified to 

Equations ( 16)  and ( 17)  are to be applied in conjunction with eqs. ( 15) and 
( 12)  respectively. 

EXPERIMENTAL 

Fresh natural rubber (NR)  latex was coagulated by formic acid. The coag- 
ulated NR was thoroughly rinsed with water and dried in air at  ambient tem- 
perature. In order to modify the molecular weight distribution close to the 
Schulz-Zimm type, the NR sample was slightly premasticated into thin sheet. 

Intrinsic viscosity measurements were performed on dilute NR solutions 
using toluene as solvent at  30.0 k 0.1”C. An Ubbelohde dilution viscometer 
was employed. The kinetic energy and shear corrections were negligible. In- 
trinsic viscosities were determined by the extrapolation method based on Hug- 
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gins equation and the single-point determination. For the latter, we have first 
established the relation l4 

k H  = 0.32 + 0.31/ [ 71 (18) 

where kH is the Huggins coefficient. Combining eq. ( 18) with the Huggins equa- 
tion13 leads to 

(19) 
- (  1 + 0.31C) + [ (1 + 0.31C)' + 1.28(7, - l)] "' 

0.64C [71 = 

where C is the concentration of NR solution in g/dL and qr is the relative 
viscosity. The [ 73 of the initial NR sample was found to be 5.47 dL/g, corre- 
sponding to Mu = 9.8 X lo5 based on a = 0.70 and K = 3.5 X lo-* dL/g.15 

The thermal oxidative degradation of NR was carried out in an oven at  
100.0, 120.0,140.0, and 160.0"C in the presence of air. Every measure was taken 
to ensure the equilibrium oxygen content in the NR film. The samples were 
quenched with water at ambient temperature after aging for the designated 
periods of time, t .  

Least-squares analyses were performed for all linear relationships. 

RESULTS AND DISCUSSION 

It has been shown that the random chain scission of NR obeys a pseudo- 
zeroth order kinetics during the initial oxidative degration ~ t a g e . ~ . ' ~  Hence, we 
have 

where [ NR] , [ NRIo are respectively the concentrations of NR (mol/Uvol) a t  
time t and t = 0, and k' is the rate constant. It is noted that eqs. ( 17) and (20) 
are indeed equivalent if the zeroth and first order rate constants are correlated 
by k' = p k / M , ,  where p is the density (g/mL) of NR and M,  is the molecular 
weight of its repeat unit. Hence, eq. (17) is applicable to this system. 

Substituting eqs. (17)-( 12) yields 

Eq. (21 ) implies that the product kt is only dependent on the degradation 
temperature, T ,  at a constant [v],. The values of the foregoing t ,  hereafter 
designated by t,, may be readily interpolated from the [ 7Is - t plots at various 
temperatures as demonstrated in Figure 3 ( A ) .  Figure 3 (B)  exhibits the Ar- 
rhenius plots for the NR by plotting In t,' against T-' at the three levels of 
chain scissions indicated by the [ 7IS values. The straight lines are discernibly 
parallel, with slopes giving the average activation energy, E,, equal to 96 f 1 
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Fig. 3. ( A )  Plots of [s]. against t for a natural rubber at various temperatures ( " C ) :  ( 0 )  160; 
(0 )  140; ( 0 )  120; ( 8 )  100. ( B )  Plot of In t;' against T-' for the foregoing systems. 

kJ mol-'. The average literature value of E, for NR is cited as 92 kJ m01-l.~ 
These results are indeed in essential agreement. 

Attempts to compute the rate constant k have been unsuccessful a t  the exact 
values of A ,  n and P: are virtually unknown. Despite this shortcoming, the 
present analysis indeed makes the E, a parameter of easy access. Apparently, 
the classical DSV also rests on eq. (9 )  but with F ( b ,  b,)  equal to unity. This 
means that, in the strict sense, it is valid only for the most probable distribution. 
Hence, the proposed method is more general and versatile, and should be applied 
in place of the standard technique in any event. 

Davis and Golden have handled the kinetic data of thermal degradation 
by7,17 

(22)  

where to and C" are the characteristics parameters of the model." Since the 
equation is particularly effective for excessive chain scission, it is best applied 
in connection with eqs. (15)  and (16). Taking the boundary condition [ 171 
= [ 1710 at  t = 0, eq. (22)  is recast to 

In [ 17Is = - a h  ( t  + t o )  + C" 

-- [171s - (1 + t / t o ) - "  
[ 1710 
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Comparing eq. (23) with eq. ( 15) results in 

The Arrhenius equation for k is written as 

k = k,exp(-E,/RT) (25) 

where k0 and R are respectively the preexponential factor, and gas constant. 
Manipulation of eqs. ( 16) ,  (24),  and (25) at t = t o  yields 

E a  In to = In I + - 
R T  

where 

with p being an adjustable parameter. In order to satisfy eq. (15), p must be 
large. Accordingly, eq. (26a) is reduced to 

It follows that a plot of In to against T-' would produce a straight line with 
intercept and slope rendering the information on and E, respectively. Such 
linear plots are demonstrated in Figure 4 for polycarbonate (PC) ,  and 
poly( tetramethylene oxide) (PTMO) ?,17 Here, the to datum at each temperature 
was derived by extrapolating the asymptotic linear part of the curve of log [ 7lS 
against log t to [qIs = where t = to. The PTMO was prepared by the 
polymerization of tetrahydrofuran /phosphorous pentafloride complex in vac- 
uum as well as in air. Figure 4 reports the E, for these samples to be 198 (in 
vacuum) and 215 kJ mo1-l (in air), whereas the conventional DSV technique 
cites a common value of 208 kJ mo1-l for the two cases. The E, values of the 
PC are 171 and 165 kJ mol-' obtained respectively by the present procedure 
and the classical approach. Clearly, the E, data estimated by the two distinct 
treatments are indeed comparable, considering the possible experimental and 
algorithm errors involved. Perhaps, a striking feature of eq. (26) is its depend- 
ability and simplicity in that it requires less input information to produce the 
precise results. However, additional data on a, p :  and b are essential for es- 
timating the absolute value of k .  

In conclusion, we have determined the E, of random scission event for NR, 
PC, and PTMO by a novel viscometry. The method employs only the [ q ]  data 
collected over either the initial or final stage of the degradation process. It is 
workable for Do I 10 which practically covers a broad spectrum of commercially 
important polymers. Although the present and classical viscometric methods 
seem to produce equivalent results in this study, the former is theoretically 
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Fig. 4. Plots of In to against T-' for polycarbonate ( 0 )  , poly (tetramethylene oxide) prepared 
in air (0) , and in vacuum ( 0 ) .  

more rigorous in that it makes allowance for the variation of molecular weight 
distribution with extent of conversion. 
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